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Abstract. A thermal postbuckling analysis is presented for a simply supported, moderately thick rectangular plate
subjected to uniform or nonuniform tent-like temperature loading and resting on a softening nonlinear elastic
foundation. The initial geometrical imperfection of the plate is taken into account. The formulations are based
on the Reissner-Mindlin plate theory considering the first-order shear-deformation effect, and including plate-
foundation interaction and thermal effects. The analysis uses a deflection-type perturbation technique to determine
the thermal buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the
performances of perfect and imperfect, moderately thick plates resting on softening nonlinear elastic foundations.
The effects played by foundation stiffness, transverse shear deformation, plate aspect ratio, thermal load ratio and
initial geometrical imperfections are studied. Typical results are presented in dimensionless graphical form and
exhibit interesting imperfection sensitivity.

Key words: elastic foundation, moderately thick plate, perturbation method, thermal postbuckling, structural
stability

1. Introduction

In the thermal analysis of concrete pavements of roads and airfields, the problem is usually
simplified and analyzed as moderately thick rectangular plates supported by an elastic founda-
tion. These plates may have significant and unavoidable initial geometrical imperfections. Due
to boundary constraints, varying temperature environments typically induce stress, with ensu-
ing buckling. Therefore, there is a need to understand the thermal buckling and postbuckling
behavior of imperfect shear-deformable rectangular plates resting on elastic foundations.

Although a limited number of publications have appeared in the literature on the thermal
buckling of thick plates subjected to temperature distribution, investigation of the thermal
postbuckling response of thick plates is very limited. Thermal buckling loads for initially
stressed transversely isotropic and antisymmetrically cross-ply laminated thick plates were
evaluated by means of the Galerkin method by Chenet al. [1] and by Yang and Shieh
[2]. Thermal buckling analyses of composite laminated thick plates subjected to uniform or
nonuniform temperature loading have been made by Tauchert [3], Sun and Hsu [4] and Chen
et al. [5].

Noor and Peters [6, 7] and Nooret al. [8] calculated buckling loads and postbuckling
load-deflection curves of perfect, symmetrically laminated plates subjected to combined axial
load and a uniform temperature distribution. Librescu and Souza [9] analyzed postbuckling
of an imperfect, shear-deformable, transversely isotropic plate under combined thermal and
compressiveedge loading. Shen and Zhu [10] analyzed the thermal postbuckling of perfect and
imperfect, moderately thick plates subjected to uniform or nonuniform tent-like temperature
distribution using the deflection-type perturbation technique.
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For elastic foundations, Raju and Rao [11] calculated the thermal postbuckling response
of a thin isotropic square plate resting on a Winkler elastic foundation by the finite-element
method. Dumir [12] analyzed the thermal postbuckling of a thin isotropic rectangular plate
resting on a Pasternak-type elastic foundation using the Galerkin method, but his numerical
results were only for the Winkler elastic foundation case.

The softening effect of some types of nonlinear foundations has been known for a long
time and the initial postbuckling problem of imperfect thin plates resting on such foundations
has been studied by Reissner [13]. Recently, Shen [14] gave the theoretical investigation of the
postbuckling response of in-plane compressed,perfect and imperfect, isotropic and orthotropic
thin plates resting on softening nonlinear elastic foundations. This work was extended to
composite laminated plates by Shen and Williams [15] using the classical laminated plate
theory. Also recently, Librescu and Lin [16] analyzed the postbuckling of imperfect, shear-
deformable transversely isotropic flat and curved panels subjected to complex mechanical
loading and resting on nonlinear elastic foundations. To the best of the author’s knowledge,
no papers deal with the thermal postbuckling of imperfect Reissner-Mindlin plates subjected
to nonuniform temperature loading and resting on softening nonlinear elastic foundations.

Therefore, the present work focuses attention on the thermal postbuckling of moderately
thick plates subjected to uniform or nonuniform tent-like temperature loading and resting
on softening nonlinear elastic foundations. The formulations are based on the Reissner-
Mindlin first-order shear deformation plate theory, including plate-foundation interaction and
thermal effects. The analysis uses a deflection-type perturbation technique to determine the
required thermal buckling loads and postbuckling equilibrium paths. The material properties
are assumed to be independent of temperature. The initial geometrical imperfection of the
plate is taken into account but, for simplicity, its form is taken as the initial buckling mode of
the plate.

2. Analytical formulation

Consider a moderately thick rectangular plate of lengtha, width b and thicknesst simply
supported on its four edges. The plate is subjected to thermal loading and rests on an elastic
foundation. The foundation is assumed to be an attached foundation, that means no part of the
plate lifts off the foundation in the postbuckled regime. The load-displacement relationship
of the foundation is assumed to bep = K1W �K3W

3
, as used for imperfect columns by

Amazigoet al. [17], wherep is the force per unit area,K1 is the Winkler foundation stiffness
andK3 is the softening nonlinear elastic foundation stiffness.U; V andW are the plate
displacements parallel to a right-hand set of axes(X;Y;Z), whereX is longitudinal andZ
is perpendicular to the plate. Denoting the initial deflection byW

�

(X;Y ), let W (X;Y ) be
the additional deflection, andF (X;Y ) be the stress function for the stress resultants, so that
Nx = F ;yy; Ny = F ;xx andNxy = �F ;xy.

From the Reissner-Mindlin plate theory considering the first-order shear-deformation
effect, including plate-foundation interaction and thermal effects, the governing differential
equations of such plates are

Dr4W +r
2MT =

�
1�

D

�2Gt
r

2
�
[L(W +W

�

; F )� (K1W �K3W
3
)]; (1)

r
4F + (1� �)r2NT = �

1
2 E tL(W + 2W

�

;W ); (2)

where
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in whichD is flexural rigidity andD = E t3=12(1� �2). E is Young’s modulus,G is the
in-plane shear modulus and� is the Poisson’s ratio. Also�2 is the shear factor, which accounts
for the nonuniform part of the shear-strain distribution through the plate thickness, and for
Reissner plate theory�2 = 5=6, while for Mindlin plate theory�2 = �2=12.

The nonuniform tent-like temperature rise is

T (X;Y;Z) =

(
T0 + 2T1Y=b 0 6 Y 6 b=2

T0 + 2T1(1� Y=b) b=2 6 Y 6 b;
(3)

whereT0 is the uniform temperature rise, andT1 is the temperature gradient.
The thermal force and moment are defined by

(NT ;MT ) =
E�

1� �

Z
+t=2

�t=2
(1; Z)T (X;Y;Z)dZ (4)

in which� is thermal expansion coefficient for a plate. Because of Equations (3) and (4), it is
noted that the thermal momentMT = 0 andr2NT = 0.

The average end-shortening relationship is
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All the edges are assumed to be simply supported and to be restrained against expansion in
theX- andY -directions, respectively. The tangential motion parallel to the immovable edges
is unrestrained,i.e. the membrane shear forces are zero-valued (see [12]). Hence the boundary
conditions are

X = 0; a : W = U = 0; Nxy =Mx = 0; (6a,b,c,d)

Y = 0; b : W = V = 0; Nxy =My = 0; (6e,f,g,h)
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whereMx andMy are, respectively, the bending moments per unit width and per unit length
of the plate.

Equations (1)–(6) are the governing equations describing the required large deflection
thermal postbuckling response of the plate.

3. Analytical method and asymptotic solutions

Let �T = 12(1 + �)b2�Ti=�
2t2 (i = 0 for uniform temperature distribution; and i =

1 otherwise) and introducing the dimensionless quantities (in which the alternative forms
k1 andk3 are not needed until the numerical examples are considered)

x = �X=a; y = �Y=b; � = a=b; (W;W �) = (W;W
�

)[12(1� �2)]1=2=t;

F = F=D;  = �2D=�2a2Gt; (Mx;My) = (Mx;M y)a
2[12(1� �2)]1=2=�2D t;

(K1; k1) = (a4; b4)K1=�
4D; (K3; k3) = (a4; b4)K3=�

4E t;

(�x; �y) = (�x=a;�y=b)12(1� �2)b2=4�2t2 (7a-j)

enables the nonlinear Equations (1) and (2) to be written in dimensionless form as
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The unit end-shortening relationships become
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Note that Equations (8) and (9) are identical to those of Reissner-Mindlin plates under
pure axial compression and resting on softening nonlinear elastic foundations (see [18]), but
Equation (10) contains terms in�T. In Equation (10), for the uniform thermal loading case,
C11 = 1�0 and�T = 12(1+ �)b2�T0=�

2t2, whereas for the tent-like temperature loading
case,C11 = (T0=T1 + 1=2) and�T = 12(1+ �)b2�T1=�

2t2.
The conditionU = 0 (orV = 0) for the immovable edgesX = 0; a (or Y = 0; b) may be

expressed in an average sense as (see [16])

Z
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!
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Then the boundary conditions of Equation (6) become

x = 0; � : W = 0; �x = 0; F;xy = 0; Mx = 0; (11a,b,c,d)

y = 0; � : W = 0; �y = 0; F;xy = 0; My = 0: (11e,f,g,h)

Applying Equations (8)–(11), the thermal postbuckling behavior of Reissner-Mindlin plates
resting on a softening nonlinear elastic foundation can be determined by the perturbation
technique suggested in [19]. The essence of this procedure, in the present case, is to assume
that

W (x; y) =
X
j=1

"jwj(x; y); F (x; y) =
X
j=0

"jfj(x; y); (12a,b)

where" is a small perturbation parameter, and the first term ofwj(x; y) is assumed to have
the form

w1(x; y) = A
(1)
11 sinmx sin ny (13)

The initial geometrical imperfection is assumed to have a similar form tow1(x; y), i.e.

W �(x; y) = "A�

11 sinmx sin ny = "�A
(1)
11 sinmx sin ny; (14)

where� is the imperfection parameter.
Substituting Equation (12) in Equations (8) and (9), collecting the terms of the same order

of ", we derive a system of perturbation equations which can be written as
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4
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r
4
f3 = ��2L(w1 +W �; w2); (21)

By using Equations (13) and (14) to solve these perturbation equations of each order, we
may determine the amplitudes of the termswj(x; y) andfj(x; y) step by step and, as a result,
the asymptotic solutions are obtained as

W = "[A
(1)
11 sinmx sin ny] + "3[A
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13 sinmx sin 3ny +A

(3)
31 sin 3mx sin ny
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whereB(i)

00 andb(i)00(i = 0;2;4; : : :) come from in-plane uniform compressive stresses induced
by a temperature rise.

In Equations (22) and (23) all coefficients are related and can be written as functions of
A
(1)
11 . Illustrative ones are given here:
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in which

b13 = [m4(1+ �)(1+ 2�)� 3K3][1+ (m2 + 9n2�2)];
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b31 = [n4�4(1+ �)(1+ 2�)� 3K3][1+ (9m2 + n2�2)];

b33 = K3[1+ 9(m2 + n2�2)]; d13 = m4[2(1+ �)2 + (1+ 2�)]� 9K3;

d31 = n4�4[2(1+ �)2 + (1+ 2�)]� 9K3;
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Next, substituting Equations (22) and (23) in the boundary conditions�x = 0 and�y = 0,
we have

�2B
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1
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11 ")

2: (26a,b)

In Equations (26a, b), let" approaches to zero, which leads to�2B
(0)
00 = b

(0)
00 .

Because of Equation (24a) we have

�2B
(0)
00 = b

(0)
00 =

(m2 + n2�2)2 +K1[1+ (m2 + n2�2)]

(1+ �)(m2 + n2�2)[1+ (m2 + n2�2)]
: (27)

If the maximum deflection of the plate is assumed to be at the point(x; y) = (�=2m;�=2n),
Equation (22) results in

Wm = "A
(1)
11 � "3(A

(3)
13 +A

(3)
31 �A

(3)
33 ) + � � � ; (28)

whereWm is the dimensionless form of the maximum deflection of the plate.
The inverse form of Equation (28) can be written as

A
(1)
11 " =Wm +

1
16

�
b13

g13
+
b31

g31
�
b33

g33

�
W 3

m + � � � : (29)

Adding Equations (24a–c) and combining these with Equations (26a,b) and replacing the
perturbation parameter(A(1)

11 ") with the maximum deflectionWm, then the thermal postbuck-
ling equilibrium path can be written as

�T = �
(0)
T + �

(2)
T W 2

m + �
(4)
T W 4

m + � � � ; (30)
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Table 1. Comparisons of various theories on the thermal buckling load��T = �T0 � 103 for
perfect isotropic square plates

Present
b=t Noor & Burton HSDPTa CPTb

Ref. [20] �2 = 5=6 �2 = �2=12

100 0�1264 0�1265 0�1265 0�1265 0�1265
20 3�109 3�1194 3�1194 3�1188 3�1633
10 11�83 11�9782 11�9778 11�9694 12�6533
5 39�90 41�3175 41�2971 41�1969 50�6134

aCalculated using higher order shear deformation plate theory given in [21].
bCalculated using classical plate theory given in [22].

in which

(�
(0)
T ; �

(2)
T ; �

(4)
T ) = (S0; S2; S4)=�

2(m2 + n2�2)C11 (31a)

and

S0 = �1=(1+ �)[1+ (m2 + n2�2)]; S2 = �2=16(1+ �);

S4 = (C24� C44)=256(1+ �); �1 = (m2 + n2�2)2 +K1[1+ (m2 + n2�2)]

�2 = [(3� �2)(m4 + n4�4) + 4�m2n2�2](1+ �)(1+ 2�)=(1� �2)� 9K3;

C24 = 2�2

�
b13

g13
+
b31

g31
�
b33

g33

�
; C44 =

�
b13d13

g13
+
b31d31

g31
+ 3K3

b33

g33

�
: (31b–h)

Equation (30) can be employed to obtain numerical results for the thermal postbuckling load-
deflection curves of Reissner-Mindlin plates subjected to uniform or nonuniform tent-like
temperature loading and resting on softening nonlinear elastic foundations. As expected, there
are three special cases: (1) ifK3 = 0, Equation (30) is valid for the thermal postbuckling of a
Reissner-Mindlin plate resting on Winkler elastic foundations; (2) ifK1 = K3 = 0, Equation
(30) reduces to the thermal postbuckling equilibrium path of a Reissner-Mindlin plate without
any elastic foundation, as previously given in [10]; and (3) if the plate is thin enough, then

approaches zero and equation (30) is brought into a form suitable for the solutions of the von
Kármán plate. We can readily obtain the thermal buckling load of perfect plates numerically,
by setting� = 0 (orW

�

=t = 0), while takingWm = 0 (orW=t = 0). The minimum initial
thermal buckling load is determined by application of Equation (30) for various values of the
buckling mode(m;n), i.e. for different numbers of half-waves in theX- andY - directions,

respectively. From Equation (31), it can be seen that�
(0)
T only depends on the foundation

stiffnessK1, thus the thermal buckling loads for Winkler and nonlinear elastic foundations
are identical. As expected, the results of the next section show that the nonlinear foundation
stiffnessk3 affects the thermal postbuckling response of the plate, but does not affect its linear
buckling load.
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Figure 1. Thermal postbuckling load-deflection curves of Reissner-Mindlin plates on Winkler or nonlinear elastic
foundations.

4. Numerical results and discussion

A thermal postbuckling analysis has been presented for the Reissner-Mindlin plates subjected
to uniform or nonuniform temperature loading and resting on softening nonlinear elastic
foundations. In the numerical analysis, asymptotic solutions up to 4th-order were used. A
number of examples were solved to illustrate the application of the method presented. These
relate to the performance of perfect and imperfect, moderately thick plates resting on softening
nonlinear elastic foundations. For all of the examples (except for Table 1)� = 0�3; � =
1�0 � 10�6=�C and the transverse shear correction factor was considered�2 = �2=12.
Typical results are presented in dimensionless graphical form. In all figuresW

�

=t andW=t

mean the dimensionless forms of the maximum values of the initial and additional deflection
of the plate, respectively.

As part of the validation of the present method, the thermal buckling load,��T = �T0�103,
for perfect, simply supported, isotropic square plate subjected to a uniform temperature rise
with different thickness ratio and without an elastic foundation is compared in Table 1 with
results of 3-dimensional solutions given by Noor and Burton [20] and of higher-order shear-
deformation plate theory (HSDPT) calculated by means of the expressions given in [21]
and of classical plate theory (CPT) calculated from the expressions given in [22]. Clearly,
the results obtained from the present method, HSDPT and the 3-D elasticity theory are in
good agreement, but CPT gives a higher buckling temperature for moderately thick and thick
plates.

Figure 1 gives the thermal postbuckling load-deflection curves of Reissner-Mindlin plates
subjected to a uniform temperature rise and resting on eighter Winkler or nonlinear elastic
foundations. The stiffnesses for the nonlinear elastic foundation cases are(k1; k3) = (5�0;2�0)
or (5�0;5�0) as shown and Winkler elastic foundation has(k1; k3) = (5�0;0�0). These results
show that the thermal buckling loads for Winkler and nonlinear elastic foundations are identi-
cal, but that the postbuckling responses are quite different. They also show that the foundation
stiffness affects the thermal postbuckling response of the Reissner-Mindlin plate significantly
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Figure 2. Effect of transverse shear deformation on
the thermal postbuckling of Reissner-Mindlin plates on
nonlinear elastic foundations.

Figure 3. Effect of plate aspect ratio on the thermal
postbuckling of Reissner-Mindlin plates on nonlinear
elastic foundations.

and that the postbuckling equilibrium path changes from stable to unstable as the nonlinear
elastic foundation stiffnessk3 increases, enabling imperfection sensitivity to be predicted.

Figure 2 gives the thermal postbuckling load-deflection curves for Reissner-Mindlin plates
with different thickness ratiob=t(= 10�0;5�0) under uniform temperature loading and resting
on a nonlinear elastic foundation and are compared with their classical counterparts. The results
calculated show that the thermal buckling load of moderately thick plates withb=t = 10�0 is
about 2.4% lower than that of the thin plate. It is found that the thermal buckling load and
postbuckling strength decrease withb=t, but they have a rather minor effect.

Figure 3 shows the effect of plate aspect ratio�(= 1�0;2�5) on the thermal postbuckling
response of Reissner-Mindlin plates subjected to a uniform temperature rise and resting on a
nonlinear elastic foundation. The results show that the thermal buckling loads are increased
by decreasing the plate aspect ratio�, but the postbuckling deflection of plate with� = 2�5 is
larger than that of plate with� = 1�0 whenW=t > 0�25. Note that heated rectangular plate
with � = 2�5 has buckling mode with(m;n) = (3;1), whereas the square plate buckles with
(m;n) = (1;1).

Figure 4 shows the effect of thermal load ratioT0=T1(= 0�0;0�5;1�0) on the postbuckling
response of Reissner-Mindlin plates subjected to tent-like temperature loading and resting on
nonlinear elastic foundations. It can be found that the thermal buckling load decreases by
increasing the thermal load ratioT0=T1 and that the postbuckling equilibrium path becomes
significantly lower as the thermal load ratioT0=T1 increases.

In Figures 1, 3 and 4 the plate width-to-thickness ratiob=t = 10�0 and in Figures 2–4 the
foundation stiffness is characterized by(k1; k3) = (5�0;2�0).

Figure 5 shows the curves of imperfection sensitivity for heated thin or moderately thick
plates resting on nonlinear elastic foundations.�� is the collapse load of�T which we made
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Figure 4. Effect of thermal load ratioT0=T1 on the
postbuckling of Reissner-Mindlin plates on nonlinear
elastic foundations.

Figure 5. Comparisons of curves of imperfection sen-
sitivity of heated thin and moderately thick plates on
nonlinear elastic foundations.

dimensionless by dividing it by the critical value�T of the perfect plate corresponding to
W=t = W

�

=t = 0�0. These results show that the imperfection sensitivity of the plate on a
nonlinear elastic foundation with(k1; k3) = (5�0;5�0) is larger and is considerably greater
than that of the plate on a nonlinear elastic foundation with(k1; k3) = (5�0;2�0). In contrast,
the imperfection sensitivity of a thin plate is slight weaker than that of a moderately thick
plate. Note that, because the reaction forcep could be negative in the large-deflection range,
the results presented were only for small initial geometrical imperfections.

5. Conclusions

Thermal postbuckling of simply supported, Reissner-Mindlin plates resting on softening
nonlinear elastic foundations, induced by a uniform and nonuniform tent-like temperature
distribution, has been studied by a perturbation method. The numerical results show that the
characteristics of thermal postbuckling are influenced significantly by foundation stiffness,
thermal load ratio and initial geometrical imperfection.

Unlike the plate resting on a Winkler or Pasternak-type elastic foundation, which has a
stable postbuckling equilibrium path, in a number of cases a heated Reissner-Mindlin plate
resting on a softening nonlinear elastic foundation, like its compressed counterpart, has an
unstable postbuckling equilibrium configuration. For such cases, the plate is an imperfection-
sensitive structure that exhibits all the interesting features of such structures.
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Nomenclature
a; b plate length and breadth W

�

;W � geometrical imperfection of a plate and
D flexural rigidity for a plate its dimensionless form
E elastic modulus for a plate � thermal expansion coefficient for a plate
F; F stress function and its dimensionless � aspect ratio of plate,= a=b

form �x; �x average end-shortening and its dimen-
G in-plane shear modulus for a plate sionless form
K1; K1; k1 Winkler elastic foundation stiffness " a small perturbation parameter

and its two alternative dimensionless �2 shear factor for a Reissner-Mindlin
forms plate

K3; K3; k3 softening nonlinear elastic foundation �� imperfection sensitivity parameter,
stiffness and its two alternative = (maximum�T of imperfect plate)/
dimensionless forms (critical �T of perfect plate)

t thickness of a plate �T dimensionless form of thermal stress
W;W deflection of a plate and its dimension- � imperfection parameter

less form � Poisson’s ratio
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